
CS499 Senior Thesis: Delay Composition Algebra applied to tasks conforming
to Processor Quotas

Abhishek Pradhan∗

Department of Computer Science
University of Illinois at Urbana-Champaign

Tarek Abdelzaher†

Department of Computer Science
University of Illinois at Urbana-Champaign

Abstract

Delay Composition Algebra is a technique used to analyze the real
time schedulability of a task set over a distributed system. This pa-
per will explore methods in which we can apply the Delay Compo-
sition Algebra to systems where real time tasks sets are limited to a
certain quota within the individual nodes of the distributed system.
We will define two configurations in which the delay caused by the
imposed quota affects the real time task set and derive methods in
which the configuration along with the task set can be reduced to
a standard Delay Composition Algebra problem. The result of the
reduction will describe a systematic method of performing schedu-
lability analysis on a set of real time tasks that operate only under
the alloted quota.

Keywords: delay composition algebra, quotas, real time systems

1 Introduction

1.1 Background

The Delay Composition Algebra uses a set of simple operators to
systematically convert a set of real-time tasks on a distributed sys-
tem into a set of tasks on a uniprocessor system in order to perform
schedulability analysis. [Jayachandran and Abdelzaher 2008a] The
method is derived from the fact that the worst-case delay imposed
by one task on another is combined sub-additively due to the effect
of pipelining on distributed systems. [Jayachandran and Abdelza-
her 2007] We are also granted the ability to extend this framework
to various types of task sets due to the fact that this method does not
make any assumptions about scheduling policy other than the fact
that tasks are assigned the same priority across nodes.

1.2 Motivation

There is an increasing number of applications that are modeled as
real time tasks that often coexist with non real time applications.
One result of such systems is that the scheduling algorithm results
in what is seen to be a round robin algorithm where time quanta
are heterogeneously assigned to real time and non real time tasks.
[Deng et al. 1997] In such systems the time quantum assigned to
a real time task is defined to be quota that it operates under. With
the advent of distributed computing we can see that real time tasks
would similarly be shared with non real time tasks paving the need
to perform schedulability analysis on such systems. Schedulabil-
ity analysis on distributed systems can be simplified into a system-
atic process as shown previously. [Jayachandran and Abdelzaher
2008a] It is due to reason that we will build upon this mechanism
in order to perform schedulability analysis on tasks that are limited
to quotas on distributed systems.

∗e-mail: apradha2@illinois.edu
†e-mail: zaher@illinois.edu

Figure 1: In the second configuration we note that the real time
quota is synchronized such that it is viewed as a pipelined task trav-
eling through the distributed system.

1.3 Objective

There are two configurations that we will define based on the means
in which the delay caused by processor quotas affects the real time
tasks. The first configuration we will look at is when the processor
quotas across the various nodes in the distributed system are not
synchronized, in effect we will look at the worst case condition for
examples of such delays. For the second configuration we will look
at when processor quotas are synchronized across nodes; in this
case we will look at the scenario where the quota travels through
the system in order to allow simulate pipelined behavior, in effect
trying to produce the best case scenario. Figure 1 illustrates the
method in which we define the synchronized scenario.

2 Delay Composition Algebra

2.1 Introduction

Delay Composition Algebra uses a simple set of operators used to
reduce a real-time task set on a distributed system into a unipro-
cessor task set. We will first give a brief overview of how delay
composition algebra works in order to provide a background for the
methods that are used in this paper, the detailed analysis and devel-
opment of these methods are described in a previous paper. [Jay-
achandran and Abdelzaher 2008a]

2.2 Data Representation

Given a real-time task set, there are two primary methods of data
representation. The first one describes the structure and arrange-
ment of nodes in the distributed system including the flow of infor-
mation which is represented by a directed acyclic graph. [Jayachan-
dran and Abdelzaher 2008b] The second is used to describe the task
set on each node which presents itself as an n by n matrix where n
is the number of tasks that appear in the system. [Jayachandran and
Abdelzaher 2008a] The elements of this matrix are defined to be
the delay terms where element (i, k) represents the delay that task
Ji imposes on Jk.

The delay term is a tuple defined to be (qi,k, ri,k) where qi,k is the
defined to be maximum delay that task Ji imposes on Jk within
that node and is called the max term. The second term in the tu-




i, k J1 J2 . . Jn

J1 (q1,1, r1,1) (q1,2, r1,2) . . (qn,n, rn,n)
J2 (q2,1, r2,1) (q2,2, r2,2) . . (qn,n, rn,n)
. .
. .
Jn (qn,1, rn,1) (qn,2, rn,2) . . (qn,n, rn,n)

s1 s2 . . sn


Figure 2: The operand used in the Delay Composition Algebra
thats contains the delay term matrix.

[Jayachandran and Abdelzaher 2008a]


i, k J1 J2 J3 J4

J1 (C1,j , 0) (C1,j , 0) (0, 0) (C1,j , 0)
J2 0 (C2,j , 0) (0, 0) (C2,j , 0)
J3 0 0 (0, 0) (0, 0)
J4 0 0 0 (C4,j , 0)

C1,j max(C1,j , C2,j) 0 max(C1,j ,
C2,j , C4,j)


Figure 3: sk term defined using preemptive scheduling.

[Jayachandran and Abdelzaher 2008a]

ple ri,k is called the accumulator term and is used for keeping a
track of delay that is caused by a task that is not represented in that
node. [Jayachandran and Abdelzaher 2008a] A term described as sk
which is in the last row of the operand (shown in Figure 2) is used
to describe the delay imposed on job Jk independent of the number
of jobs in the system. Given preemptive scheduling this term is de-
fined to be sk = maxi≤kqi,k and for non-preemptive scheduling we
have sk = maxiqi,k+ maxi>kqi,k. [Jayachandran and Abdelzaher
2008a; Jayachandran and Abdelzaher 2008c] Figures 3 and 4 are
examples of these definitions respectively.

2.3 Operators

The objective of using the Delay Composition Algebra is to take a
distributed system and reduce it to a single processor. As such there
are two operators that are defined in order to aid in the reduction of
a distributed task set into one or more uniprocessor task sets. This
reduction allows us to use previously defined bounds and research
in order to determine the schedulability of the task set.

2.3.1 PIPE Operator

Given A and B where there exists an edge from A to B and A
has exactly one outgoing edge, we are able reduce these two nodes


i, k J1 J2 J3 J4

J1 (C1,j , 0) (C1,j , 0) (0, 0) (C1,j , 0)
J2 0 (C2,j , 0) (0, 0) (C2,j , 0)
J3 0 0 (0, 0) (0, 0)
J4 0 0 0 (C4,j , 0)

C1,j +max(C2,j , max(C1,j , 0 max(C1,j ,
C4,j) C2,j) + C4,j C2,j , C4,j)


Figure 4: sk term defined using non-preemptive scheduling.

[Jayachandran and Abdelzaher 2008a]

Figure 5: PIPE and SPLIT operator and the equivalent stages of
their result.

[Jayachandran and Abdelzaher 2008a]

Figure 6: PIPE Operator
[Jayachandran and Abdelzaher 2008a]

into a single node C by using the PIPE operator. As described by
[Jayachandran and Abdelzaher 2008a] the definition for PIPE is as
follows where C = A PIPE B:

1. ∀i, k : qCi,k = max(qAi,k, q
B
i,k)

2. ∀i, k : rCi,k = max(rAi,k, r
B
i,k)

3. ∀k : sCk = sAk + sBk

2.3.2 SPLIT Operator

The SPLIT operator is used when we have multiple outgoing and no
incoming edges for a given node A. (we can use the PIPE operator
to eliminate all incoming edges) Given l outgoing edges the node
A is split into l different nodes, these are replicas of A except for
the fact that the columns for tasks that do not follow the given edge
are zeroed out. Finally for each matrix i of these new l matrices
we update the accumulator term values for all higher priority tasks
that existed in A but do not exist in i; the new accumulator value
is defined as (0, qi,k + ri,k) where (qi,k, ri,k) was the value in the
original matrix for A. The formal definition for the SPLIT opera-
tor is defined in [Jayachandran and Abdelzaher 2008a]. Figure 7
describes the usage of the SPLIT operator.

2.3.3 Non-Acyclic Task Sets

If we are given a non-acyclic task set a CUT operator as defined in
[Jayachandran and Abdelzaher 2008a] can be used to modify the
task set such that it is acyclic.

3 Processor Quotas

Given the overview of Delay Composition Algebra, we can now
look at using and extending this method by applying it to cases
where real time tasks are limited to a certain quota on the processor.
As mentioned previously we will look at three configurations in this



Figure 7: SPLIT Operator
[Jayachandran and Abdelzaher 2008a]

scenario and reduce its analysis into a Delay Composition Algebra
problem.

3.1 Unsynchronized Quotas

3.1.1 Problem Description

The case of unsynchronized quotas is classified by the fact that
there is an assumption that the delay on each node is independent
of the other nodes. It is here that we will make no assumption about
the processor quota assigned on each node and take into account a
worst case scenario for processor quotas, thus given a distributed
system we will handle a delay component for each node.

3.1.2 Method

The approach taken by this method classifies the delay components
as independent tasks running through the system, given the highest
priority. Given a node A we will define the delay component for
that node as DA, it will be defined by the amount of time on the
node that is not dedicated to the real time tasks that we are ana-
lyzing dA. This analysis is defined by assigning n additional rows
to the final operand matrix where n is the number of nodes in the
system. The delay element in the matrix for each DA

i , Jk pair will
be defined as (0, dAi ) if job Jk was present in that node in the dis-
tributed system. If this was not the case then the delay element dAi
is defined to be 0 resulting in (0, 0), as that processor quota does
not affect the corresponding job. This is illustrated in Figure 8.
Once the final matrix has been constructed we are able to reduce
it to a task set as per the method described in [Jayachandran and
Abdelzaher 2008a].

3.1.3 Derivation

The method for handling unsynchronized quotas is obtained from
the fact that the delay caused by the imposition of a processor quota
is modeled as a high priority task. We begin by observing that on
a uniprocessor task set we are able to model the delay caused by
a processor quota by adding an extra task and assigning it as the
highest priority task within that task set. On a distributed system in
the worst case scenario we make the assumption that this delay will
affect us on each node that the tasks have to travel through. It is
in this case that the delay on each node will be wholly independent
of the other nodes and due to this reason could be variable for each
node. Thus to approach the solution we will model the delay caused
by processor quotas as an independent task on each node.

In order to create this model we note that we must for each node
PIPE the delay task into the node and then SPLIT it as it does not



i, k J1 J2 . . Jn

DA
1 (0, dA1 ) (0, dA1 ) . . (0, dA1 )

DB
2 (0, dB2 ) (0, dB2 ) . . (0, dB2 )
. .
. .

DN
n (0, dNn ) (0, dNn ) . . (0, dNn )

J1 (q1,1, r1,1) (q1,2, r1,2) . . (qn,n, rn,n)
J2 (q2,1, r2,1) (q2,2, r2,2) . . (qn,n, rn,n)
. .
. .
Jn (qn,1, rn,1) (qn,2, rn,2) . . (qn,n, rn,n)

s1 s2 . . sn


Figure 8: Applying delay composition algebra to unsynchronized
quotas.

travel travel through the rest of the distributed system. Given a node
A within a distributed system with a task set J1 through Jn, we first
introduce the quota delay by PIPEing it into the node.

A =


i, k J1 J2 . . Jn

J1 (q1,1, r1,1) (q1,2, r1,2) . . (qn,n, rn,n)
J2 (q2,1, r2,1) (q2,2, r2,2) . . (qn,n, rn,n)
. .
. .
Jn (qn,1, rn,1) (qn,2, rn,2) . . (qn,n, rn,n)

s1 s2 . . sn


PIPE

DA =

(
i, k DA

0

DA
0 (dA0 , 0)

s0

)

The operation A PIPE DA gives us the following operand matrix:

A PIPE DA =

i, k DA
0 J1 J2 . . Jn

DA
0 (dA0 , 0) (dA0 , 0) (dA0 , 0) . . (dA0 , 0)

J1 (0, 0) (q1,1, r1,1) (q1,2, r1,2) . . (qn,n, rn,n)
J2 (0, 0) (q2,1, r2,1) (q2,2, r2,2) . . (qn,n, rn,n)
. (0, 0) .
. (0, 0) .
Jn (0, 0) (qn,1, rn,1) (qn,2, rn,2) . . (qn,n, rn,n)

s0 s1 s2 . . sn


Next we perform a SPLIT operation as we do not want the delay
task to propagate through the rest of the system. Thus we obtain
SPLIT(A PIPE DA):

A′ =



i, k J1 J2 . . Jn

DA
0 (dA0 , 0) (dA0 , 0) . . (dA0 , 0)

J1 (q1,1, r1,1) (q1,2, r1,2) . . (qn,n, rn,n)
J2 (q2,1, r2,1) (q2,2, r2,2) . . (qn,n, rn,n)
. .
. .
Jn (qn,1, rn,1) (qn,2, rn,2) . . (qn,n, rn,n)

s1 s2 . . sn


We are only concerned about A′ since once the delay task has been
SPLIT we do not need reference it for schedulability analysis. It is



Figure 9: Unsynchronized Quota Example

noted that this sequence of operations applied to through all nodes
in the system will result in the matrix described earlier and por-
trayed in Figure 8.

3.1.4 Example

The following example illustrates the usage of this method, we will
use the five stage preemptive system as shown in Figure 9. This
system is shown to have two tasks defined as T1 and T2. We will
define the quota delay component and the computation time of each
task to be one computation time unit.

Using Delay Composition Algebra we first use the method de-
scribed in [Jayachandran and Abdelzaher 2008a] to reduce the dis-
tributed system into a uniprocessor task set to obtain the following
operand matrix.  i, k T1 T2

T1 (1, 0) (1, 1)
T2 (0, 0) (1, 0)

3 3


We now add the delay elements for each of the nodes to the matrix.

i, k T1 T2

DA (0, 1) (0, 1)
DB (0, 1) (0, 1)
DC (0, 1) (0, 0)
DD (0, 0) (0, 1)
DE (0, 1) (0, 1)
T1 (1, 0) (1, 1)
T2 (0, 0) (1, 0)

3 3


It is noted that DC , T2 and DD , T1 are (0, 0) since T1, and T2

are not present on those stages. We can now perform schedulability
analysis on this task set by reducing it to classical uniprocessor by
following the method as described in [Jayachandran and Abdelza-
her 2008a]. Once this task has been performed we can use classical
uniprocessor techniques such as [Audsley et al. 1993] to determine
the schedulability of the task set.

3.2 Synchronized Quotas

3.2.1 Problem Description

The second case we will look at involves time synchronized quotas
across the distributed system. This synchronization as illustrated in
Figure 1 is defined to be one where the quota for the real time tasks
travels through the system in order to ensure pipelined behavior.
We will define this behavior to be one where given nodes A and B
in the distributed system, where there exists a directed edge from A



i, k D J1 J2 . . Jn

D (d, 0) (d, 0) (d, 0) . . (d, 0)
J1 (0, 0) (q1,1, r1,1) (q1,2, r1,2) . . (qn,n, rn,n)
J2 (0, 0) (q2,1, r2,1) (q2,2, r2,2) . . (qn,n, rn,n)
. .
. .
Jn (0, 0) (qn,1, rn,1) (qn,2, rn,2) . . (qn,n, rn,n)

s0 s1 s2 . . sn


Figure 10: Synchronized Quotas Method: The operand matrix for
each node is modified to include the delay task.

Figure 11: If the delay component is modeled as a periodic task we
do not need to perform any extra analysis in order to determine the
schedulability of the task set.

to B, the real time quota once completed on node A immediately
begin on node B. For now we will also assume that there will be
no SPLIT operations in the distributed system.

3.2.2 Method

The approach taken by this method views the delay caused by the
quota as a periodic task traveling through the distributed system.
Given a distributed system we will define the delay component to
be D. We note that for each node A in the distributed system we
will add task D as an additional row, defined to be the highest pri-
ority task. The operand element (d, 0) will be used to represent the
time that is not allotted to the real time task set where d is the delay
caused in time computation units. This will allow us to view the de-
lay as a task traveling through the distributed system. We will then
perform the reduction of the distributed system into a uniprocessor
task to perform schedulability analysis as shown in [Jayachandran
and Abdelzaher 2008a].

3.2.3 Derivation

The derivation for this method is obtained from the principal that
the delay component is modeled as a periodic task. Given the fact
that the quota is synchronized in order to allow the emulation of
pipelined behavior we note that in Figure 11 we are able to view the
delay component as providing an uninterrupted pipelined pattern
for those tasks that complete within the allotted quota. We note that
in such analysis we need to calculate the delay caused to those tasks
that are unable to complete on a single node in the allotted quota,
as the other tasks will flow through the system in an interrupted
fashion. Due to this case if we model the delay as a periodic task
we automatically handle the calculation of this delay using the tools
of analysis we already have available to us. A note to make here
is that there is a slight degree of pessimism imposed by the fact
that we assume that delay quota affects the real time task set in at
least one node. This is due to the fact that we make use of the
result described in [Jayachandran and Abdelzaher 2007] in order
to perform an elegant reduction.



4 Evaluation : Pending Section

This section will be used to evaluate the accuracy and degree of pes-
simism imposed by this method. I plan to use the same simulation
technique as in the Delay Composition Algebra Paper.

References

AUDSLEY, N., BURNS, A., RICHARDSON, M., TINDELL, K.,
AND WELLINGS, A. J. 1993. Applying new scheduling theory
to static priority pre-emptive scheduling. Software Engineering
Journal 8, 284–292.

DENG, Z., LIU, J.-S., AND SUN, J. 1997. A scheme for schedul-
ing hard real-time applications in open system environment. In
Real-Time Systems, 1997. Proceedings., Ninth Euromicro Work-
shop on, 191 –199.

JAYACHANDRAN, P., AND ABDELZAHER, T. 2007. A delay com-
position theorem for real-time pipelines. In Real-Time Systems,
2007. ECRTS ’07. 19th Euromicro Conference on, 29 –38.

JAYACHANDRAN, P., AND ABDELZAHER, T. 2008. Delay com-
position algebra: A reduction-based schedulability algebra for
distributed real-time systems. In Real-Time Systems Symposium,
2008.

JAYACHANDRAN, P., AND ABDELZAHER, T. 2008. Transforming
distributed acyclic systems into equivalent uniprocessors under
preemptive and non-preemptive scheduling. In Real-Time Sys-
tems, 2008. ECRTS ’08. Euromicro Conference on, 233 –242.

JAYACHANDRAN, P., AND ABDELZAHER, T. 2008. Delay com-
position in preemptive and non-preemptive real-time pipelines.
Real-Time Syst. 40 (December), 290–320.


